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Abstract

Shape modeling using planar cubic algebraic curves calls for computing the real inflection points of thes
since inflection points represents important shape feature. A real inflection point is also required for trans
projectively a planar cubic algebraic curve to the normal form, in order to facilitate further analysis of the
However, the naive method for computing the inflection points of a planar cubic algebraic curvef = 0 by directly
intersectingf = 0 and its Hessian curveH(f ) = 0 requires solving a degree nine univariate polynomial equa
and thus is relatively inefficient. In this paper we present an algorithm for computing the real inflection poin
real planar cubic algebraic curve. The algorithm follows Hilbert’s solution for computing the inflection poin
cubic algebraic curve in the complex projective plane. Hilbert’s solution is based on invariant theory and r
solving only a quartic polynomial equation and several cubic polynomial equations. Through a detailed stu
emphasis on the distinction between real and imaginary inflection points, we adapt Hilbert’s solution to effi
compute only the real inflection points of a cubic algebraic curvef = 0, without exhaustive but unnecessary sea
and root testing. To compute the real inflection points off = 0, only two cubic polynomial equations need to
solved in our algorithm and it is unnecessary to solve numerically the quartic equation prescribed in H
solution. In addition, the invariants off = 0 are used to analyze the singularity of a singular curve, since
number of the real inflection points off = 0 depends on its singularity type.
 2003 Published by Elsevier Science B.V.
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1. Introduction

An inflection point, or flex, of a planar algebraic curvef (x, y,w) = 0 is a simple point off = 0 at
which the tangent off = 0 has at least an order three contact withf = 0. Algebraically, the inflection
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points of an algebraic curvef = 0 are at the intersection off = 0 with the Hessian curveH(f ) = 0 of
f = 0. This article is about computing the real inflection points of an irreducible planar cubic alg
curve.

Planar cubic algebraic curves, often referred to ascubics, are the simplest planar curves contain
inflection points (Walker, 1950; Patterson, 1988b). Shape modeling with planar cubics have been
in (Paluszny and Patterson, 1998). Inflection points are of interest in this setting because it
necessary to know whether or not a given cubic curve segment contains an inflection point.

A real inflection point is also useful when one needs to map projectively an irreducible planar
to the normal formy2w = g(x,w) (i.e., the Weierstrass form), whereg(x,w) is a cubic form inx and
w, since the normal form can be obtained by placing a real inflection point off = 0 at the point(0,1,0)
at infinity. The normal form of a planar cubic facilitates the study of the projectively invariant prop
and the parameterization of the curve. Such an application of planar cubics is considered in (Pa
1988a) for parameterizing a planar cubic and in (Wang et al., 2002) for analyzing the intersectio
between two quadric surfaces in 3D space, which is shown to be related birationally to a plana
curve. Without using an inflection point, one would normally have to use a more involved bira
quadratic transformation to reduce a planar cubic to the normal form (Abhyankar and Bajaj,
Patterson, 1988a).

Most of existing research in CAGD on computing inflection points considers rational param
curves. The detection of inflection points on a rational planar parametric cubic curve, which is
singular cubic algebraic curve, is studied in (Wang, 1981; Stone and DeRose, 1989). The detec
computation of inflection points of general rational parametric curves are studied in (Manocha and
1992; Li and Cripps, 1997).

Given a planar cubicf = 0, its Hessian curveH(f ) = 0 is also a cubic. Hence, in general, a pla
cubic has nine inflection points, including real and complex conjugate ones. The nine inflection
of a real nonsingular cubic comprise three real inflection points and six imaginary ones (Walker,
These inflection points can be computed by directly intersectingf = 0 with H(f ) = 0, which requires
solving a univariate equation of degree nine. Probably due to the lack of emphasis in classical a
geometry on the computational aspect of algebraic curves, it has been unclear to the CAGD com
whether or not the inflection points of a planar cubic can be found more easily than solving a degr
equation (Patterson, 1988a).

On the other hand, the existence of a simpler solution seems to be possible, since it is well
that the nine inflection points of a planar cubic form a so-callednine-point configuration, i.e., every line
passing through two of the nine points also passes through a third (Walker, 1950). Indeed, such a
was given by Hilbert more than a hundred years ago (Hilbert, 1993). As an application of his w
invariant theory, Hilbert presented a method for computing the inflection points of a planar cubic
complex plane through solving a quartic equation, called thecharacteristic equation. In this paper w
adapt Hilbert’s solution to devise an efficient algorithm for computing only thereal inflections of a rea
cubic algebraic curve.

Since it is often the case that only real inflection points are of concern in CAGD, we stud
ramifications of distinguishing real and imaginary inflection points. If only real inflections are so
a direct implementation of Hilbert’s solution would be inefficient since it would require exhau
computation of the imaginary roots of a quartic equation as well as the imaginary linear comp
of a reducible cubic curve. Our goal in this paper is to adapt Hilbert’s solution to efficiently compu
real inflection points of a cubic algebraic curve.
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Specifically, we show how to use invariants to detect singular cubics in order to compute real infl
points for different types of cubics, since the number of the real inflection points depends
singularity type of a cubic. We further show that all the real inflection points of a cubic lie on a
line given by a particular real root of the quartic characteristic equation of Hilbert. Finally, we g
simple closed-form formula for this particular real root; hence, the real inflection points of a cub
be computed without having to solve numerically Hilbert characteristic equation of degree four
two cubic polynomial equations need to be solved in a step for extracting a real linear compone
reducible cubic algebraic curve in our algorithm.

The remainder of this paper is organized as follows. In Section 2 preliminaries about planar
and the invariants of a ternary form are introduced. In Section 3 we present the algorithm for com
the singular points and real inflection points of a planar real cubic curve.

2. Preliminaries

A planar algebraic curvef (x, y,w) = 0 of degreen is given by the ternary form

f (x, y,w) :=
∑

i,j,k�0, i+j+k=n

fijkx
iyjwk. (1)

For a cubic curvef = 0 to be considered in this paper, we assume throughout that the coefficienfijk
are real, and we callf = 0 a planar real cubic algebraic curve, or acubic for short when there is n
danger of confusion.

An algebraic curvef = 0 is reducible if f can be factored into two lower degree polynomials, tha
there exist polynomialsf1(x, y,w) andf2(x, y,w) such thatf = f1f2. Otherwise,f = 0 is irreducible.
Geometrically, a reducible curve consists of lower degree algebraic curves as its components.

A point (x0, y0, z0) is a singular point of a planar algebraic curvef (x, y, z) = 0 if

fx(x0, y0,w0) = fy(x0, y0,w0) = fw(x0, y0,w0) = 0. (2)

By Euler’s identitynf = xfx +yfy +zfz, the conditions in (2) imply that(x0, y0,w0) is a point onf = 0.
The curvef = 0 is calledsingular if it has a singular point; otherwise, it is callednonsingular. A singular
pointp of the curvef = 0 is characterized geometrically by that the tangent tof = 0 atp is not uniquely
defined.

An inflection point of the curvef = 0 is a nonsingular pointp onf = 0 at which the tangent tof = 0
has at least an order three contact withf = 0 (Walker, 1950). The inflection points of the curvef = 0
can be determined by the intersection off = 0 and itsHessian curve

H(f ) :=

∣∣∣∣∣∣∣∣

∂2f

∂x2
∂2f

∂x∂y

∂2f

∂x∂w

∂2f

∂y∂x

∂2f

∂y2
∂2f

∂y∂w

∂2f

∂w∂x

∂2f

∂w∂y

∂2f

∂w2

∣∣∣∣∣∣∣∣
= 0. (3)

For a cubicf = 0,H(f ) = 0 is also a cubic. Thus, in general, a cubicf = 0 has nine inflection point
(real or imaginary), since, by Bézout’s theorem, two cubic curves have nine intersections, unle
have a common component. However,f = 0 has fewer inflection points if it is reducible or singular.

The Hessian curveH(f ) = 0 can be used to detect whether a cubic curve is reducible or not.
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Proposition 1. (1) A cubic f = 0 consists of three lines if and only if its Hessian curve H(f ) = 0 and
f = 0 are the same curve.

(2) A cubic f = 0 consists of a line and a proper conic if and only if f = 0 and H(f ) = 0 share
exactly one common line.

Proof. Assume that the curvef = 0 consists of three lines. Thenf = l1l2l3 for three homogeneous line
factor li(x, y,w), i = 1,2,3. Since every point off = 0 is either a singular point or a point on a lin
H(f ) vanishes at every point off = 0. ThusH(f ) = cl1l2l3 for some constantc. Conversely, if there
exists some constantc such thatH(f ) = cf , then every point on the curvef = 0 is an inflection point.
But this occurs only whenf = 0 degenerates into three lines. The first part of the proposition is pro

For the second part of the proposition, assumef = lC, wherel is a linear factor andC is a quadratic
factor. Direct calculation showsH(f ) = lC ′, whereC ′ is a quadratic function. Hencef = 0 and
H(f ) = 0 share a common line. Conversely, ifH(f ) = 0 andf = 0 have only one common linel = 0,
thenl is a factor off . By the first part of the proposition,f cannot be factored into three linear facto
sof = 0 degenerates into a line and a conic curve.✷

The above proposition gives the following algorithm for detecting whether or not a cubic is redu
First compute the Hessian curveH(f ) = 0 and check if there exists a constantc such thatH(f ) = cf . If
yes,f = 0 consists of three lines. Otherwise, computeh = GCD(f,H(f )). If h contains a linear factor
thenf = 0 reduces to a line and a proper conic. Otherwise,f = 0 is irreducible. Hence, we assum
hereafter that the cubic we will consider is irreducible.

An irreducible cubic can be singular or nonsingular. A singular cubic has one singular point,
is a double point of one of the following three types: crunode, cusp, and acnode (Walker, 1950).
will see later in the next section, a singular point off = 0 is also a singular point of its Hessian cur
H(f ) = 0. Thus a singular cubic curve has fewer than nine inflection points.

A degree nine equation needs to be solved if one attempts to compute the inflection points of
f = 0 by directly intersectingf = 0 with its Hessian curveH(f ) = 0. In contrast, Hilbert gives a solutio
based on invariant theory to the computation of the inflection points of a cubic that needs to s
univariate quartic equation and several univariate cubic equations. To introduce Hilbert’s solution,
review some basic concepts from invariant theory. Two references on invariant theory are (Hilbert
Olver, 1999).

Let

F(x1, . . . , xm) =
∑

i1+···+im=n

ai1...imx
i1
1 . . . ximm (4)

be a homogeneous polynomial inm variables.F is also called aform. Consider an arbitrary linea
transformation


x1 = α11x

′
1 + · · · + α1mx

′
m,

. . .

xm = αm1x
′
1 + · · · + αmmx

′
m.

(5)

Assume the transformation is invertible, that is, the determinant

δ =
∣∣∣∣∣∣
α11 . . . α1m
...

...
...

αm1 . . . αmm

∣∣∣∣∣∣ �= 0. (6)
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F ′(x′
1, . . . , x

′
m) =

∑
i1+···+im=n

a′
i1...im

(x′
1)

i1 . . . (x′
m)

im. (7)

An invariant of the formF is a polynomialI of the coefficientsai1...im which has the property

I (. . . , a′
i1...im

, . . .) = δpI (. . . , ai1...im , . . .) (8)

for some integerp, which is called thedegree of the invariantI . For example, the quadratic for
F = a0x

2
1 + 2a1x1x2 + a2x

2
2 has an invariantI = a0a2 − a2

1, since one can verify that

I (a′
0, a

′
1, a

′
2) = δ2I (a0, a1, a2).

A covariant of the formF is a polynomialC of the coefficientsai1...im and variablesx1, . . . , xm which
has the property

C(. . . , a′
i1...im

, . . . , x′
1, . . . , x

′
m)= δpC(. . . , ai1...im, . . . , x1, . . . , xm). (9)

A cubic curvef = 0 is determined by a ternary formf of degree three. The invariants and covaria
of a cubic form are clearly studied in (Hilbert, 1993).

Proposition 2 (Hilbert, 1993).The ternary form f corresponding to a planar cubic curve has two basic
invariants S and J of degree four and six, respectively, and any other invariant of f is a polynomial of S
and J . The ternary form f has two covariants of degree three—f and its Hessian H(f ), and any other
covariant of degree three is a linear combination of f and H(f ).

We will not write down explicit formulas for the invariantsS andJ , since they are too long to be fitte
in one page. Moreover, these formulas are too involved to be used for computingS andJ . Hence, we
will provide in the next section an efficient way to computeS andJ of a give cubic curve.

An irreducible ternary form of degree three can be transformed into the normal form by a s
linear transformation.

Proposition 3 (Walker, 1950).There exists a real linear transformation such that an irreducible real
ternary form f of degree three can be transformed into the normal form

f̃ (x′, y′,w′) = y′2w′ − x′(x′2 + 2ax′w′ + bw′2) (10)

where a and b are real constants.

As a consequence of this proposition, an irreducible cubic can be transformed by a pro
transformation into the normal form (10). This normal form of a cubic curve facilitates the pro
our results in the next section.
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3. Computing singular points and real inflection points

3.1. Hilbert’s solution

In this section we discuss how to use the basic invariants of a cubicf = 0 to compute the rea
inflections off = 0. Given a cubicf = 0, consider the family of curves spanned byf = 0 andH(f ) = 0

g := αf + 6βH(f ) = 0. (11)

Then for any real constantsα and β that are not both zero, the curveg = 0 passes through all th
intersections betweenf = 0 andH(f ) = 0, i.e., the inflection points and the singular point (if any)
f = 0. If we can findα andβ such that the Hessian curveH(g) = 0 is the curveg = 0 itself, then, by
Proposition 1,g = 0 is reducible to three lines. Thus the problem of finding the singular and infle
points off = 0 can be reduced to the problem of intersecting a cubic curve with three lines. The ex
of suchα andβ is proved by Hilbert.

Proposition 4 (Hilbert, 1993).Let f = 0 be a planar cubic curve and H(f )= 0 be its Hessian curve. If
α and β satisfy

α4 − 24Sα2β2 − 8Jαβ3 − 48S2β4 = 0 (12)

then the curve g = αf + 6βH(f ) = 0 degenerates to three lines. Here S and J are the two basic
invariants of f .

Hilbert’s results provide a complete solution to the problem of finding the inflection points of a
curve in thecomplex projective plane. However, as far as applications in CAGD are concerned the
still problems worthy of further investigation. In the following we first consider how to efficiently ob
Eq. (12), and hence the basic invariantsS andJ . We then useS andJ to classify the singularity type
of f = 0, which determines the number of inflection points off = 0. We also investigate how real line
arise as the components of the reducible curveg = αf + 6βH(f ) = 0 given by different rootsα : β
of Eq. (12) and we show that only a special real linear component is needed for computing all t
inflection points off = 0.

Since, as mentioned above, the explicit formulas forS andJ in terms of the coefficients off = 0 are
too complicated, we may get (12) directly as follows. By Proposition 4, there exists a constantγ such
that

H
(
αf + 6βH(f )

) = γ
(
αf + 6βH(f )

)
. (13)

We randomly choose two points(xi, yi,wi), i = 1,2, and substitute them into the above equation. T
we can get two equations withα,β, γ being unknowns. After eliminatingγ , we can arrive at (12). The
the basic invariantsS andJ can be read off from the coefficients of (12).

The two invariantsS andJ are simple to compute for a curve in the normal form (10).

Theorem 1. The two invariants of a cubic curve in the normal form (10) are given by

S = 576
(
4a2 − 3b

)
, J = 110592a

(
8a2 − 9b

)
. (14)
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Proof. For the cubic curve in the normal form

f = y2w − x
(
x2 + 2axw + bw2

) = 0

its Hessian curve is given by

H(f ) = 8
[
3xy2 + (3b − 4a2)x2w + 2ay2w − 2abxw2 − b2w3] = 0.

Setting(x, y,w) = (1,0,0) and(x, y,w) = (0,0,1) on both sides of (13), respectively, we get

γ α = 152β
(
20736b2β2 + 36864a4β2 + 4a2β2 − 3bβ2 − 864abαβ − 55296a2bβ2 + 768a3αβ

)
,

6b2γβ = −20736b3αβ2 − 1990656ab3β3 + 1769472a3b2β3 + 27648a2b2αβ2 − b2α3.

Eliminatingγ from the above equations, we obtain

α4 + 13824
(
3b − 4a2)α2β2 + 884736a

(
9b − 8a2)αβ3 − 15925248

(
4a2 − 3b

)2
β4 = 0

from which the two invariantsS andJ can be read off. ✷
3.2. Singularity detection

To begin with, we study the real roots of the following equation which is obtained by settingt = α : β
in (12):

h(t) := t4 − 24St2 − 8J t − 48S2 = 0. (15)

h(t) is called thecharacteristic polynomial of the cubic curvef = 0.

Theorem 2. The distribution of the roots of h(t) is as follows:

(1) If S = J = 0, then h(t) = 0 has a real root t = 0 of multiplicity four.
(2) If S = 0 and J �= 0, then h(t) = 0 has two real roots t = 0 and t = 2 3

√
J .

(3) If S �= 0 and J 2 − 64S3 = 0, then h(t) = 0 has two real roots with opposite signs; one root is
−2 sgn(J )

√
S of with multiplicity three, and the other root is 6 sgn(J )

√
S of multiplicity one.

(4) If S �= 0 and J 2 − 64S3 �= 0, then h(t) = 0 has two simple real roots of opposite signs; furthermore,
these two real roots are given by

t± = ±
√
(12+ 8

√
3)|S|

when J = 0 or

t± = sgn(J )
√

2(γ + 3S)±
√

2

(
−γ + 3S + |J |√

2(γ + 3S)

)

when J �= 0, where

γ = 1

2
3
√
J 2 − 64S3 − S.

Here t+ is positive and t− is negative.
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Proof. If S = 0, thenh(t) = t4 − 8J t has two real rootst = 0 andt = 2 3
J . If S �= 0 andJ 2 − 64S3 = 0,

let L = sign(J )
√
S. ThenS = L2 andJ = 8L3. It follows thath(t) = (x − 6L)(x + 2L)3 = 0 has two

real roots, one with multiplicity one and the other with multiplicity three. In the following we ass
S �= 0 andJ 2 − 64S3 �= 0.

We construct the Sturm sequence of polynomialh(t) as follows

h0 := h(t) = t4 − 24St2 − 8J t − 48S2,

h1 := h′(t)/4 = t3 − 12St − 2J,

h2 := 2St2 + J t + 8S2,

h3 := −(
J 2 − 64S3)t,

h4 := −S2.

The sign changes of the Sturm sequence att = −∞, t = 0 andt = ∞ are, respectively

V (−∞)= V
(+,−, S, J 2 − 64S3,−)

, V (0) = (−,−J,+,−),

V (+∞)= V
(+,+, S,−(

J 2 − 64S3),−)
.

It is easy to verify thatV (−∞) = 3, V (0) = 2 andV (+∞) = 1. Hence there exist one root in(−∞,0)
and one root in(0,∞). Sinceh4 �= 0, these two roots are simple. Next we derive the expression fo
two real roots ofh(t).

WhenJ = 0, h(t) = 0 becomes

t4 − 24St2 − 48S2 = 0.

Thus the real roots ofh(t)= 0 are

t = ±
√
(12+ 8

√
3)|S|.

Now we supposeJ �= 0. Introduce a real numberγ so that the characteristic equation is transform
to (

t2 + 4γ
)2 = 8(γ + 3S)t2 + 8J t + 16

(
γ 2 + 3S2

)
. (16)

For the right-hand side of the above equation to be a perfect square, we need the discriminant to
i.e.,

J 2 − 8(γ + 3S)
(
γ 2 + 3S2) = 0. (17)

Thus the unique real numberγ is found to be

γ = 1

2
3
√
J 2 − 64S3 − S.

SinceJ �= 0, it follows from (17) thatγ + 3S �= 0. So

(
t2 + 4γ

)2 = 8(γ + 3S)

(
t + J

2(γ + 3S)

)2

.

Taking the square root and rearranging, we have

t2 ± 2
√

2(γ + 3S)t + 4γ ± 2J√
2(γ + 3S)

= 0. (18)
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It follows that the two real roots ofh(t) = 0 are

t± = sgn(J )
√

2(γ + 3S)±
√

2

(
−γ + 3S + |J |√

2(γ + 3S)

)
.

Note thatt+ > 0 andt− < 0, according to the preceding argument. The theorem is thus proved.✷
Remark 1. In deriving the above expression for the real roots ofh(t) in case (4), we used the standa
technique in solving a quartic equation in the first step of findingγ to make the two sides of (16) perfe
squares (Uspensky, 1948). However, the key to being able to obtain a simple expression for the r
is that the resolvent cubic equation inγ takes a special form so that we can get a simple expression fγ ,
i.e.,γ = 1

2
3
√
J 2 − 64S3 − S. Note that the expressions for the roots of a general resolvent cubic eq

for solving a quartic equation are more complicated (see again (Uspensky, 1948)).

Remark 2. It will be seen shortly that, in general, only the negative real root ofh(t) = 0 is needed for
computing the real inflection points of a cubic curve. Since we have obtained an explicit express
this root in Theorem 4, we can compute the real inflection points of a cubic curve without the n
solving the quartic equationh(t)= 0 numerically.

Now we consider how the invariantsS andJ can be used to classify the singularity of a cubicf = 0.
If S = 0, by Proposition 1,H(f ) = 0 consists of three lines, since in this caset = 0 is a root ofh(t)= 0.
The vanishing ofJ 2 − 64S3 = 0 signals thatf = 0 is singular. In fact, we have

Theorem 3. An irreducible cubic f = 0 is singular if and only if J 2 − 64S3 = 0. If f = 0 is singular,
its singular point is always real and the singular point is a crunode, a cusp, or an acnode if and only if
J > 0, J = 0, or J < 0, respectively.

Proof. By Proposition 3, any irreducible cubic can be transformed into the normal form (10)
suitable real projective transformation, and the type of its singular points and the number of its infl
points are not changed by the transformation. Accordingly, the two invariantsS andJ are transformed to
S ′ = δ4S andJ ′ = δ6J , and hence(J ′)2 − 64(S ′)3 = δ12(J 2 − 64S3), whereδ �= 0 is the determinant o
the transformation matrix. Thus we just need to prove the statement for a cubic in the normal for
Note that here we just make use of the existence of the normal form of a cubic but do not need to
compute it.

The canonical curve (10) has a singular point if and only ifb = 0 ora2 − b = 0, and the singular poin
is real ((0,0,1) or (−a,0,1)). Thus the singular point of a real singular cubic is real.

On the other hand, by Theorem 1, we have

J 2 − 64S3 = [
110592a

(
8a2 − 9b

)]2 − 64
[
576

(
4a2 − 3b

)]3 = −22439b2
(
a2 − b

)
.

Thus the canonical curve (10) has a singular point if and only ifJ 2 − 64S3 = 0.
Now assumeJ 2−64S3 = 0, that is,b = 0 ora2−b = 0. Obviously,S = J = 0 if and only ifa = b = 0,

and if and only if the singular point is a cusp. Next we assumeb = 0 but a �= 0, soS = 2304a2 and
J = 884736a3. In this case, the canonical curve (10) becomesy2 = x2(x + 2a). It has a crunode if an
only if a > 0, or if and only ifJ > 0. It has an acnode if and only ifa < 0, and if and only ifJ < 0. For
the casea2 − b = 0 buta �= 0, one can show similarly that the same results hold.✷
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Theorem 4. If an irreducible cubic f = 0 is singular, then H(f ) = 0 is also singular; furthermore, in
this case the singular point of f = 0 is a singular point of H(f ) = 0.

Proof. Again we just need to prove that the statement holds for an irreducible cubic curvef = 0 in the
normal form (10). It can be computed that the two invariants of the Hessian curveH(f ) = 0 are given by

S ′ = 218
(
576a6 − 1296a4b + 729b3

)
,

J ′ = 23033a
(
512a8 − 1728a6b + 3888a4b2 − 4860a2b3 + 2187b4).

Thus

J ′2 − 64S ′3 = 260312
(
a2 − b

)
b2

(
4a2 − 3b

)6 = 23633
(
4a2 − 3b

)6(
J 2 − 64S3

)
. (19)

Sincef = 0 is singular, by Theorem 3,J 2 − 64S3 = 0. It follows from (19) thatJ ′2 − 64S ′3 = 0. Then,
by Theorem 3,H(f ) = 0 is singular.

For the cubic curvef = 0 in the normal form

f = y2w − x
(
x2 + 2axw + bw2

) = 0

its Hessian curve is

H(f ) = 8
(
3xy2 + (

3b − 4a2
)
x2w + 2ay2w − 2abxw2 − b2w3

) = 0.

If f = 0 is singular, then by Theorems 1 and 3, eitherb = 0 or a2 − b = 0, with the singular point o
f = 0 at(0,0,1) or (−a,0,1), respectively. It is then straightforward to verify that(0,0,1) or (−a,0,1)
is also a singular point ofH(f ) = 0 if b = 0 ora2 − b = 0, respectively. ✷
3.3. Computing a real line that contains all real inflection points

From now on we setβ = 1 in a roott = α : β of Eq. (15). For each solutiont = α of Eq. (15), the
corresponding curveg = αf + 6H(f ) = 0 can be factored into three lines. We need to know how m
of the three lines are real.

Theorem 5. Suppose that f = 0 is a real irreducible cubic. Let α be a real root of h(t) = 0. Then the
curve g = αf + 6H(f ) = 0 consists of three distinct real lines if and only if α > 0 or α = 0 and J < 0,
and contains one real line if and only if α < 0 or α = 0 and J > 0. In particular, when S = J = 0,
g = H(f ) consists of three real lines, and one of them is a double line.

Proof. Sincef = 0 is an irreducible cubic, by Proposition 1,f = 0 can be mapped to a cubic̃f = 0 in
the normal form (10) by a linear transformationM . The characteristic equation of̃f = 0 can be shown
to be

h̃(t) = t4 − 24Sδ4t2 − 8Jδ6t − 48S2δ8 = 0

whose roots differ from those ofh(t) of the cubicf = 0 only by a positive multiplicative constantδ2,
whereδ is the determinant of the matrix ofM . On the other hand, it is easy to see that the numbe
components of the curveg = 0 obtained fromf = 0 with a root ofh(t) has the same number of real line
components as the curveg̃ = 0 obtained fromf̃ = 0 with the corresponding root of̃h(t); furthermore, a
double line ofg = 0 is transformed byM to a double line of̃g = 0.
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Hence, to prove the theorem, we may assume that the cubicf = 0 is in the normal form (10), i.e.,

f (x, y,w) = y2w − x
(
x2 + 2axw + bw2

)
.

Direct computation yields

g = αf + 6H(f )

= −αx3 + (
144b − 2αa − 192b2)x2w + 144xy2 + (−96av − αb)xw2

+ (α + 96a)y2w − 48b2w3.

When α �= 0, the curveg = 0 intersects the line at infinityw = 0 in three distinct points(0,1,0),
(
√
αx,12,0) and (−√

αx,12,0). If α > 0, the three intersection points are real, sog = 0 consists of
three distinct real lines; ifα < 0, two of the intersection points are complex conjugate, sog = 0 contains
only one real line.

Whenα = 0 is a root ofh(t) = 0, S must be zero, sob = 4a2/3 andJ = −442368a3. Then the curve

g = (3x + 2aw)
(
9y2 − 8a3w2

) = 0

degenerates to three real lines if and only ifa > 0, and if and only ifJ < 0. Similarly,g = 0 contains one
real line if and only ifJ > 0.

WhenS = J = 0, α = 0 is the only root ofh(t) = 0, andg = 6H(f )= 24xy2. Thusg = 0 consists of
three real lines, one of which is a double line.✷
Theorem 6. The number of inflection points of an irreducible cubic curve f = 0 is as follows:

(1) If f = 0 has a cusp, then f = 0 has one real inflection point;
(2) If f = 0 has a crunode, then f = 0 has one real inflection point and a pair of complex conjugate

inflection points;
(3) If f = 0 has an acnode, then f = 0 has three real inflection points;
(4) If f = 0 is nonsingular, then f = 0 has three real inflection points and three pairs of complex

conjugate inflection points.

Proof. Without loss of generality, we assume thatf = 0 is in the normal form (10). Iff = 0 has a
cusp, by Theorem 3,S = J = 0. Hencef = y2w − x3 andH(f ) = 24xy2. The curvesf = 0 and
H(f ) = 0 have two distinct intersection points: the singular point(0,0,1) of f = 0 of multiplicity 8 and
the inflection point(0,1,0) of f = 0.

WhenJ 2 − 64S3 = 0 but S �= 0, f = 0 has a crunode or an acnode. In this case,b(a2 − b) = 0, so
b = 0 or a2 − b = 0. We consider only the caseb = 0 since the argument is similar whena2 − b = 0.
Then (0,0,1) is the singular point off = y2 − x2(x + 2aw) = 0. The two real roots ofh(t) = 0 are
α1 = −96a andα2 = 288a, which yield

g1 = α1f + 6H(f ) = 48x
(
2ax2 + 3y2

)
,

g2 = α2f + 6H(f ) = −48(3x + 8aw)
(−y2 + 2ax2

)
.

It is easy to see thatg1 = 0 andg2 = 0 intersect in four points(−8a/3,±8/9
√−6aa,1), (0,0,1), and

(0,1,0). The point(0,0,1) is the singular point off = 0 at whichg1 = 0 andg2 = 0 intersect with
multiplicity 6. The other three points are the inflection points. Ifa > 0 (i.e., J > 0, or f = 0 has a
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crunode), one inflection point is real and the other two are complex conjugate; ifa < 0 (i.e.,J < 0, or
f = 0 has an acnode), the three inflection points are real.

WhenJ 2 − 64S3 �= 0, f = 0 is nonsingular. We consider two cases:S = 0 andS �= 0. If S = 0, then
f = y2 − x(x2 + 2ax + 4/3a2) andH(f ) = (8/9)(9y2 − 8a3w2)(3x + 2aw). The two roots ofh(t) = 0
areα1 = 0 andα2 = −96 3

√
4. Thus

g1 = 6H(f ) = (16/3)
(
9y2 − 8a3w2

)
(3x + 2aw),

g2 = α2f + 6H(f )

= (4/9)c
[
3x + 2(1− c)aw

][
72ax2 + 48(2+ c)a2xw + 8(c + 2)2a3w2 + 27c2y2]

wherec = 3
√

4. It can be computed directly that the nine intersection points ofg1 = 0 andg2 = 0, i.e.,
the inflection points off = 0, are(0,1,0), (−2/3a,±2/9a

√−6a,1), (2/3(c− 1)a,±2/3a
√

2a,1) and
((−(2+ c)a ± c

√−3a)/3,±2/3a
√

2a,1). If either a > 0 or a < 0, there are three real points and th
pairs of complex conjugate points among the nine intersection points.

If S �= 0, by Theorem 2,h(t) = 0 has two real roots and a pair of conjugate rootsλ ± µ (µ �= 0),
whereλ is real andµ �= 0 is a pure imaginary number. The intersection of the two complex cu
g± = (λ±µ)f + 6H(f ) also gives the nine inflection points off = 0. Let

g+ = l1l2l3, g− = l̄1l̄2l̄3

whereli , i = 1,2,3, are linear functions. Each lineli is not a real line, for otherwiseg+ andg− would
have a common linear component, contradicting thatf = 0 is irreducible (ref. Proposition 1). Each lineli
and its conjugatēli intersect at a real point. We now claim thatli and l̄j (i �= j ) intersect at an imaginar
point. If, on the contrary, the intersection ofli and l̄j is a real pointP0, thenl̄i andlj also intersect atP0.
ThenP0 is a singular point ofg+ since two of its componentsli andlj pass throughP0. Similarly,P0 is
also a singular point ofg−. ThusP0 is a singular point of the curvef = (g+ − g1)/(2µ) = 0. But this
contradicts thatf = 0 is nonsingular. Hence, whenS �= 0, f = 0 has three real inflection points whic
are the intersections ofli and l̄i , i = 1,2,3, and three pairs of complex conjugate inflection points wh
are the remaining intersections betweenf = 0 andH(f ) = 0. ✷
Remark. The results of Theorem 6 regarding the number of inflection points for different typ
singular planar cubics is well known in algebraic geometry (see, e.g., (Gibson, 1998)). The em
of our proof is, however, to relate the different cases of singularity to the two invariantsS andJ , which
provides a basis for the algorithm to be described below.

Before giving the algorithm, we need the following two corollaries for preparation.

Corollary 7. Given an irreducible planar cubic f = 0, there exists a unique real root α of h(t)= 0 such
that g = αf + H(f ) = 0 has exactly one simple real linear component. Specifically, if S = J = 0, i.e.,
f = 0 has a cusp, the only root α = 0 of h(t) = 0 gives g := H(f ) = 0 which has a simple real linear
component and a real double linear component; if S �= 0 or J �= 0, there exists a root α of h(t) = 0
such that g = αf + H(f ) = 0 has one simple real linear component and a pair of complex conjugate
components.

Proof. The corollary follows from Theorems 2 and 5 by the following choices of the rootα in different
cases: WhenS = J = 0 (case (1) of Theorem 2), chooseα = 0. WhenS = 0 andJ > 0 in case (2) of
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Theorem 2, chooseα = 0. In cases (3) and (4) or whenS = 0 andJ < 0 in case (2) of Theorem 2, choo
α to be the only negative root ofh(t) = 0 as given in Theorem 2.✷

Let l denote the unique real simple linear component of the curveg = αf + H(f ) = 0 as prescribed
in Corollary 7.

Corollary 8. If f = 0 has three real inflection points, i.e., f = 0 is nonsingular or has an acnode, then
the real line l contains all the three real inflection points. When f = 0 has a crunode or a cusp, l contains
the only real inflection of f = 0 and the crunode or cusp.

Proof. First suppose thatf = 0 has three real inflection points. Then, by Theorem 6,f = 0 does not
have a cusp; hence, by Theorem 3,S �= 0 orJ �= 0. Then, by Corollary 7, there exists a unique real rooα

of h(t) = 0 such thatg = αf +H(f ) = ll1l̄1, wherel is a simple real linear factor andl1, l̄1 are a pair of
complex conjugate lines. Note that, as an imaginary line,l1 or l̄1 cannot contain two distinct real point
Clearly, l contains at least one real inflection pointr1 of f = 0. Suppose the other two real inflecti
pointsr2 andr3 are not onl, but onl1 and l̄1, respectively. Letq denote the real intersection point ofl1
and l̄1. Then eitherq �= r2 or q �= r3. But this contradicts that bothl1 and l̄1 are imaginary lines. Hence
all the three inflection points off = 0 are on the real linel.

When f = 0 has a crunode or a cusp, the proof is given by the proof for cases (1) and
Theorem 6. ✷
3.4. Algorithm for computing real inflection points

Based on the preceding analysis, we present the algorithm for computing the real inflection po
the singular point (if any) of an irreducible cubic algebraic curvef = 0.

Algorithm: Real-Inflections
Input: An irreducible real cubic algebraic curvef = 0.
Output: The real inflection points and singular point (if any) off = 0.
BEGIN

Step 1 Compute the Hessian curveH(f ) = 0 of the curvef = 0.
Step 2 Obtain the characteristic polynomialh(t) as defined in (15), using the procedure described a

Proposition 4 in Section 2. Extract the invariantsS andJ from the coefficients of Eq. (15).
Step 3 Compute the real roots ofh(t) = 0. If h(t)= 0 has only one rootα1 = 0, then find the simple rea

linear componentl of H(f ) = 0. Otherwise, letα1 < α2 be the two real roots ofh(t) = 0. Then,
by Corollary 7,g1 = α1f + 6H(f ) = 0 contains only one simple real line.
Factor out this linel as follows. Choose two valuesx1 andx2 of x, and substitute them intog1 = 0
to solve for the simple real valuesy1,w1 andy2,w2 such thatg1(xi, yi,wi) = 0, i = 1,2. This
requires to find the real roots of two cubic equations which are known to contain only one s
real root. Then the linel = 0 passing through(x1, y1,w1) and(x2, y2,w2) is the simple real line
of g1 = 0.

Step 4 Parameterize the linel: l = l(u). Substitutel(u) into f = 0, or equivalently, intog2 = 0 given
by the other real root ofh(t) = 0 if h(t) has two real roots, to get a cubic polynomial inu. By
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Corollary 8,g2(l(u)) = 0 has three real roots; a simple root corresponds to a real inflection
and a double root (if any) corresponds to a singular point off = 0.
The case ofJ 2 − 64S3 = 0 andJ < 0, i.e.,f = 0 has an acnode, should be treated separate
one also wants to find the acnode. In this case, the above intersection ofl = 0 with f = 0 yields
the three real inflection points off = 0. To find the acnode, we first obtain the quadratic fac
p = g1/ l, which consists of a pair of conjugate lines, and the intersection of these two lines
the acnode off = 0. This intersection point can be computed by solving the linear syste
equations:p′

x = p′
y = p′

w = 0.

END

The above algorithm can also be adapted to detect if there exists a singular point and/or in
points in a regionR in the plane. Suppose first that the regionR is convex for the sake of simplicity i
discussion. In Step 4, instead of solving the equationg2(l(u))= 0, we can check if the cubic polynomi
g2(l(u)) = 0 has any real roots in some intervalu ∈ [a, b] determined by the part of the linel intercepted
within the regionR. If g2(l(u)) = 0 has a simple root inu ∈ [a, b], thenf = 0 has an inflection point in
R, and ifg2(l(u)) = 0 has a double root inu ∈ [a, b], thenf = 0 has a singular point, i.e., a crunode o
cusp, inR; a separate checking is needed for an acnode. When the regionR is nonconvex, one may nee
to check against several intervals ofu, since the intersection of the linel(u) andR may consist of severa
line segments onl(u).

3.5. Examples

We use three examples to explain how the algorithm works.

Example 1. Given a cubic

f := −8x3 − 12x2y − 6xy2 − y3 − 7x2w − 2xyw + 7y2w − 2xw2 − yw2

we are going to find the singular point and real inflection points off = 0. It is easy to compute tha
S = 360000,J = −1728000000 andJ 2 − 64S3 = 0. Thus, by Theorem 3,f = 0 has an acnode an
three real inflection points. The two real roots of the characteristic polynomial

h(t) = t4 − 8640000t2 + 13824000000t − 6220800000000

areα1 = −3600 andα2 = 1200, and the corresponding curves are

g1 = −1200
(−30x3 − 75x2y − 90xy2 − 30y3 − 19x2w − 14xyw + 4y2w − 2xw2 − yw2 +w3

)
,

g2 = −1200
(
2x3 − 27x2y − 66xy2 − 26y3 + 9x2w − 6xyw − 24y2w + 6xw2 + 3yw2 +w3).

By substitutingx = 0 andw = 1 into g1 = 0, we get two points on the curveg1 = 0: P1 = (0,1/3,1)
andP2 = (1,−5/3,1). The linel = 6x + 3y − w = 0 passing throughP1 andP2 is the only real linear
component ofg1 = 0. To find the inflection points, we intersectl with g2 = 0, and find three real inflectio
points:(1,−2,0), (9+ 4

√
3,−3− 8

√
3,45) and(9− 4

√
3,−3+ 8

√
3,45).

To further find the acnode off = 0, letp = g1/ l = −5x2 − 10xy − 10y2 − 4xw − 2yw − w2. The
singular point is the solution of the linear system of equations

p′
x := −10x − 10y − 4w = p′

y := −10x − 20y − 2w = p′
w := −4x − 2y − 2w = 0

which is(−3,1,5).
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Fig. 1. Example 1. Two finite inflection points, marked by bullets, are on the dashed line which passes through the third i
point at infinity. The acnode is marked by a diamond.

Example 2. Let a cubic curve be given by

f := −x3 + 6x2y − 12xy2 + 8y3 − 8x2w + 38xyw − 35y2w − 25xw2 + 56yw2 − 26w3.

By direct computation, we obtainS = J = 0. Thus, by Theorem 3,f = 0 has a cusp and one re
inflection point. In this caseh(t) = 0 has only one rootα = 0, leading tog = αf + H(f ) = H(f ),
which is

H(f ) = 216
(
x3 − 3xy2 − 2y3 + 5x2w + 4xyw − y2w + 7xw2 + 4yw2 + 3w3).

We now choosex = 0,w = 1 and substitute them intoH(f ) = 0 to get two simple real points onH(f ):
P1 = (0,3,2) andP2 = (1,2,1). The linel = x − 2y + 3w = 0 passing throughP1 andP2 is the simple
real line ofH(f ). We substitutex = 2y−3w into f = 0 and find a simple rooty : w = 1 : 0 and a double
root y : w = 2 : 3. Thus we get the real inflection point(2,1,0) and the cusp(−5,2,3).

Example 3. A cubic curve is given by

f := xy2 − (x −w)(2x −w)w.

We are going to detect if there exist any inflection points off = 0 in the rectangular regionR =
[0,1]×[0,1]. By direct computation, we obtainJ 2−64S3 = −330225942528< 0. Thus, by Theorems
and 6,f = 0 is nonsingular and has three real inflection points. The two real roots of the charac

polynomialh(t) areα1 = −48
√

9+ 6
√

3 andα2 = 48
√

9+ 6
√

3, and the corresponding two curves a

g1 = −48
(
4x3 + (p + 3)xy2 − 2(p + 3)x2w − 3y2w + 3(p + 1)xw2 − pw3

)
,

g2 = −48
(
4x3 − (p − 3)xy2 + 2(p − 3)x2w − 3y2w − 3(p − 1)xw2 − pw3

)
,

wherep =
√

9+ 6
√

3.
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Fig. 2. Example 2. The dashed line passes through the cusp, marked by a diamond, and the inflection point at infi

Fig. 3. Example 3. Two finite inflection points (marked by bullets), one of which is inside the region[0,1] × [0,1], are on the
dashed line which passes through the third inflection point at infinity.

The only real line component ofg1 is l = 6x − (p − 3)
√

3w. l = 0 intersects the rectangul
regionR at two pointsP1 = ((p − 3)

√
3/6,0,1) andP2 = ((p − 3)

√
3/6,1,1). Parameterizingl by

l = (1− u)P1 + uP2 = 0, and substituting it intog2 = 0 yields

g2
(
l(u)

) = 1/3
(
(p − 3)

√
3− 6

)(
3u2 − (p − 3)

√
3− p + 6

)
.

It is easy to check thatg2(l(u)) = 0 has one simple root in[0,1]. Thusf = 0 has one real inflection poin
in the regionR.
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